Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenotypical and functional specialization of FOXP3+ regulatory T cells

Key Points

  • TReg cells 'walk the line' by preventing autoimmunity while allowing the formation of protective antipathogen and antitumour immune responses.

  • TReg cells can be divided, based on their expression of activation and homing receptors, into populations with distinct migratory, functional and homeostatic characteristics.

  • TReg cells accumulate within both lymphoid and non-lymphoid tissues, and the proper localization of TReg cells is critical to their ability to function and maintain immune homeostasis in vivo.

  • TReg cells use distinct molecular programmes to restrain TH1, TH2 and TH17 cell-mediated immune responses.

  • TReg cells can alter their phenotype and function in response to molecular cues such as cytokines and vitamin metabolites that are present in the immune environment.

  • The phenotypical and functional stability of TReg cells remains controversial, and different experimental systems have yielded conflicting results regarding the ability of TReg cells to convert to other pro-inflammatory T cell lineages.

Abstract

Forkhead box P3 (FOXP3)+ regulatory T (TReg) cells prevent autoimmune disease, maintain immune homeostasis and modulate immune responses during infection. To accomplish these tasks, TReg cell activity is precisely controlled, and this requires TReg cells to alter their migratory, functional and homeostatic properties in response to specific cues in the immune environment. We review progress in understanding the diversity of TReg cells, TReg cell function in different anatomical and inflammatory settings, and the influence of the immune environment on TReg cell activity. We also consider how these factors affect immune-mediated disease in the contexts of infection, autoimmunity, cancer and transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differing immunosuppressive mechanisms used by TReg cells in lymphoid and non-lymphoid tissues.
Figure 2: Functional differentiation of TReg cells and TH cells.
Figure 3: Modulation of TReg cell activity by different environmental factors.

Similar content being viewed by others

References

  1. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Horwitz, D. A. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res. Ther. 10, 227 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Belkaid, Y. Regulatory T cells and infection: a dangerous necessity. Nature Rev. Immunol. 7, 875–888 (2007).

    Article  CAS  Google Scholar 

  7. Nishikawa, H. & Sakaguchi, S. Regulatory T cells in tumor immunity. Int. J. Cancer 127, 759–767 (2010).

    CAS  PubMed  Google Scholar 

  8. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunol. 10, 689–695 (2009).

    Article  CAS  Google Scholar 

  9. Campbell, D. J., Kim, C. H. & Butcher, E. C. Chemokines in the systemic organization of immunity. Immunol. Rev. 195, 58–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sather, B. D. et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204, 1335–1347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dudda, J. C., Perdue, N., Bachtanian, E. & Campbell, D. J. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J. Exp. Med. 205, 1559–1565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suffia, I., Reckling, S. K., Salay, G. & Belkaid, Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J. Immunol. 174, 5444–5455 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Freyschmidt, E. J. et al. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses. J. Immunol. 185, 1295–1302 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Schneider, M. A., Meingassner, J. G., Lipp, M., Moore, H. D. & Rot, A. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J. Exp. Med. 204, 735–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Santodomingo-Garzon, T., Han, J., Le, T., Yang, Y. & Swain, M. G. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49, 1267–1276 (2008).

    Article  CAS  Google Scholar 

  17. Muller, M. et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 179, 2774–2786 (2007).

    Article  PubMed  Google Scholar 

  18. Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity. 30, 458–469 (2009). This study showed that T Reg cells must accumulate in both the draining lymph node and transplanted tissue in order to prevent islet allograft rejection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, J. H., Kang, S. G. & Kim, C. H. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol. 178, 301–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 199, 303–313 (2004). This study was the first to demonstrate that, based on their expression of homing receptors, T Reg cells could be subdivided into populations resembling naive T cells and effector- or memory-like T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Min, B. et al. Gut flora antigens are not important in the maintenance of regulatory T cell heterogeneity and homeostasis. Eur. J. Immunol. 37, 1916–1923 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002). This study demonstrated that T Reg cells at the site of infection can impair pathogen clearance and thereby help to maintain a depot of antigen that contributes to persistence of pathogen-specific immunity.

    Article  CAS  PubMed  Google Scholar 

  24. Loser, K. et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J. Immunol. 179, 365–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 28, 546–558 (2008). This paper defined the essential contribution of T Reg cell-derived IL-10 in preventing inflammatory disease at barrier tissues.

    Article  CAS  PubMed  Google Scholar 

  26. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008). This study demonstrated that T Reg cells must express CTLA4 to prevent fatal lymphoproliferative autoimmune disease.

    Article  CAS  PubMed  Google Scholar 

  27. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003).

    Article  CAS  Google Scholar 

  28. Onodera, T. et al. Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J. Immunol. 183, 5608–5614 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol. 7, 83–92 (2006). References 29 and 30 used two-photon microscopy to demonstrate that within lymph nodes T Reg cells interact predominantly with DCs.

    Article  CAS  Google Scholar 

  31. Boissonnas, A. et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity. 32, 266–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007).

    Article  CAS  Google Scholar 

  33. Lund, J. M., Hsing, L., Pham, T. T. & Rudensky, A. Y. Coordination of early protective immunity to viral infection by regulatory T cells. Science 320, 1220–1224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  Google Scholar 

  35. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Z., Laurence, A. & O'Shea, J. J. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin. Immunol. 19, 400–408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szabo, S. J., Sullivan, B. M., Peng, S. L. & Glimcher, L. H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ansel, K. M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Dardalhon, V., Korn, T., Kuchroo, V. K. & Anderson, A. C. Role of Th1 and Th17 cells in organ-specific autoimmunity. J. Autoimmun. 31, 252–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, H. Y., DeKruyff, R. H. & Umetsu, D. T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nature Immunol. 11, 577–584 (2010).

    Article  CAS  Google Scholar 

  44. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity. 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl Acad. Sci. USA 100, 15818–15823 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunol. 10, 595–602 (2009).

    Article  CAS  Google Scholar 

  48. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity. 31, 941–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009). Along with references 47 and 48, this study demonstrated that T Reg cells utilize distinct molecular programmes to control T H 1-, T H 2- and T H 17-type responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nature Immunol. 10, 769–777 (2009). This study showed that, through selective induction of the AKT–mTOR pathway, S1P 1 restrains thymic T Reg generation and peripheral T Reg function.

    Article  CAS  Google Scholar 

  52. Strober, W. Vitamin A rewrites the ABCs of oral tolerance. Mucosal Immunol. 1, 92–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Ghoreishi, M. et al. Expansion of antigen-specific regulatory T cells with the topical vitamin D analog calcipotriol. J. Immunol. 182, 6071–6078 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Jeffery, L. E. et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 183, 5458–5467 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  57. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  58. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005). This paper showed that IL-2 produced by effector or memory CD4+ T cells controls T Reg cell homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Soper, D. M., Kasprowicz, D. J. & Ziegler, S. F. IL-2Rβ links IL-2R signaling with Foxp3 expression. Eur. J. Immunol. 37, 1817–1826 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Burkett, P. R. et al. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J. Exp. Med. 200, 825–834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Siewert, C. et al. Induction of organ-selective CD4+ regulatory T cell homing. Eur. J. Immunol. 37, 978–989 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou, X. et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J. Immunol. 185, 2675–2679 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Gorman, S. et al. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J. Immunol. 179, 6273–6283 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nature Immunol. 8, 285–293 (2007).

    Article  CAS  Google Scholar 

  69. Murphy, K. M. et al. T helper differentiation proceeds through Stat1-dependent, Stat4-dependent and Stat4-independent phases. Curr. Top. Microbiol. Immunol. 238, 13–26 (1999).

    CAS  PubMed  Google Scholar 

  70. Cooper, A. M. et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFNγ. Immunity. 3, 109–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Z. E., Reiner, S. L., Zheng, S., Dalton, D. K. & Locksley, R. M. CD4+ effector cells default to the Th2 pathway in interferon γ-deficient mice infected with Leishmania major. J. Exp. Med. 179, 1367–1371 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Caretto, D., Katzman, S. D., Villarino, A. V., Gallo, E. & Abbas, A. K. Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. J. Immunol. 184, 30–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914–929 (2010). This study demonstrated that the microRNA miR-146a dampens STAT1 activity in T Reg cells and prevents them from acquiring pro-inflammatory effector functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 31, 772–786 (2009). This paper showed that during intestinal infection with Toxoplasma gondii , T Reg cells downregulate FOXP3, acquire T H 1 effector functions and contribute to infection-associated immunopathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22, 347–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  78. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006). This study defined the role of IL-6 in controlling T H 17 and iT Reg cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  79. Zheng, S. G., Wang, J. & Horwitz, D. A. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-β are resistant to Th17 conversion by IL-6. J. Immunol. 180, 7112–7116 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Mima, T. & Nishimoto, N. Clinical value of blocking IL-6 receptor. Curr. Opin. Rheumatol. 21, 224–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nature Immunol. 9, 1347–1355 (2008).

    Article  CAS  Google Scholar 

  84. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunol. 9, 1341–1346 (2008).

    Article  CAS  Google Scholar 

  85. Pillemer, B. B. et al. STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells. J. Immunol. 183, 155–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Maerten, P. et al. Effects of interleukin 4 on CD25+CD4+ regulatory T cell function. J. Autoimmun. 25, 112–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Namdar, A., Nikbin, B., Ghabaee, M., Bayati, A. & Izad, M. Effect of IFN-β therapy on the frequency and function of CD4+CD25+ regulatory T cells and Foxp3 gene expression in relapsing-remitting multiple sclerosis (RRMS): a preliminary study. J. Neuroimmunol. 218, 120–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Vandenbark, A. A. et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol. 215, 125–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Golding, A., Rosen, A., Petri, M., Akhter, E. & Andrade, F. Interferon-α regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses. Immunology 131, 107–117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoffman, H. M. Therapy of autoinflammatory syndromes. J. Allergy Clin. Immunol. 124, 1129–1138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, X. & Oppenheim, J. J. TNF-α: an activator of CD4+FoxP3+TNFR2+ regulatory T cells. Curr. Dir. Autoimmun. 11, 119–134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, X., Baumel, M., Mannel, D. N., Howard, O. M. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Ma, H. L. et al. Tumor necrosis factor α blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum. 62, 430–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Brinster, C. & Shevach, E. M. Costimulatory effects of IL-1 on the expansion/differentiation of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3 T cells. J. Leukoc. Biol. 84, 480–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Deknuydt, F., Bioley, G., Valmori, D. & Ayyoub, M. IL-1β and IL-2 convert human Treg into TH17 cells. Clin. Immunol. 131, 298–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS. Biol. 5, e38 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunol. 10, 1000–1007 (2009).

    Article  CAS  Google Scholar 

  102. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 30, 155–167 (2009). By performing genome-wide analysis of histone modification, this study demonstrated the potential for substantial functional plasticity in CD4+ T cell subsets.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010). Along with reference 101, this study used lineage tracing to examine the phenotypical and functional stability of T Reg cells in different immune settings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Akbar, A. N., Vukmanovic-Stejic, M., Taams, L. S. & Macallan, D. C. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nature Rev. Immunol. 7, 231–237 (2007).

    Article  CAS  Google Scholar 

  105. Allan, S. E. et al. CD4+ T-regulatory cells: toward therapy for human diseases. Immunol. Rev. 223, 391–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Picca, C. C. et al. Role of TCR specificity in CD4+ CD25+ regulatory T-cell selection. Immunol. Rev. 212, 74–85 (2006).

    Article  PubMed  Google Scholar 

  107. Lathrop, S. K., Santacruz, N. A., Pham, D., Luo, J. & Hsieh, C. S. Antigen-specific peripheral shaping of the natural regulatory T cell population. J. Exp. Med. 205, 3105–3117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Darrasse-Jeze, G. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 206, 1853–1862 (2009). This paper demonstrated that, in vivo , T Reg cell and DC homeostasis are intricately linked.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bollyky, P. L. et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 86, 567–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Venturi, G. M., Conway, R. M., Steeber, D. A. & Tedder, T. F. CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J. Immunol. 178, 291–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Szanya, V., Ermann, J., Taylor, C., Holness, C. & Fathman, C. G. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169, 2461–2465 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Hirahara, K. et al. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol. 177, 4488–4494 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Siegmund, K. et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106, 3097–3104 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Denning, T. L., Kim, G. & Kronenberg, M. Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J. Immunol. 174, 7487–7491 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Lim, H. W., Lee, J., Hillsamer, P. & Kim, C. H. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J. Immunol. 180, 122–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Yuan, Q. et al. CCR4-dependent regulatory T cell function in inflammatory bowel disease. J. Exp. Med. 204, 1327–1334 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kang, S. G. et al. Identification of a chemokine network that recruits FoxP3+ regulatory T cells into chronically inflamed intestine. Gastroenterology 132, 966–981 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Yurchenko, E. et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 203, 2451–2460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kleinewietfeld, M. et al. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T cell subset. Blood 105, 2877–2886 (2004).

    Article  PubMed  CAS  Google Scholar 

  122. Hirota, K. et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Soler, D. et al. CCR8 expression identifies CD4 memory T cells enriched for FOXP3+ regulatory and Th2 effector lymphocytes. J. Immunol. 177, 6940–6951 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Guo, Z. et al. CD4+CD25+ regulatory T cells in the small intestinal lamina propria show an effector/memory phenotype. Int. Immunol. 20, 307–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Eksteen, B. et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J. Immunol. 177, 593–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Oo, Y. H. et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J. Immunol. 184, 2886–2898 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Lim, H. W., Broxmeyer, H. E. & Kim, C. H. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J. Immunol. 177, 840–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Lim, H. W., Hillsamer, P. & Kim, C. H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest. 114, 1640–1649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grauer, O. M. et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int. J. Cancer 121, 95–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Wald, O. et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol. 177, 6983–6990 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all past and present members of the Campbell lab for interesting discussions and intellectual input essential to this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Campbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, D., Koch, M. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11, 119–130 (2011). https://doi.org/10.1038/nri2916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing